
A NOTE REGARDING COVERT CHANNELS

 Timothy E. Levin and Paul C. Clark

 Naval Postgraduate School

Abstract: This note presents an overview of some abstract concepts regarding covert channels. It discusses
primary means of synchronization and illicit interference between subjects in a multilevel computing
environment, and it describes a detailed laboratory exercise utilizing these abstractions.

Key words: security, covert channel, interference, multilevel, mandatory

1. INTRODUCTION

In a multilevel computing environment, a security policy is enforced which requires that low-
sensitivity subjects (e.g., a process or task) should not observe high-sensitivity information (e.g.,
data, code, or activities of high-sensitivity subjects). The most intuitive interpretation of such a
policy is a confidentiality policy, in which for example, subjects with a low clearance are not
allowed access to highly classified data1.

A multilevel system may enforce such a policy on all subjects under its control and all of the
objects that it exports to those subjects (viz., objects to which an explicit reference is possible via
a system interface). Such an enforcement mechanism is said to enforce mandatory access control
(MAC) with respect to the exported objects.

Despite the successful enforcement of MAC, a covert channel exists in such a system when
information can be passed from a high sensitivity sender subject to a low sensitivity receiver
subject via an internal object (i.e., one that is not an exported object). This reflects a processing
model in which all interactions between subjects occur through objects of some type, such as
buffers, messages, registers and files.

Covert channels are normally conceived as a medium for a series of transmissions from high
to low. Thus, for each transmission, the receiver has to know when to read. This is done through a
synchronization mechanism. There also needs to be something – the internal object – that the
sender can modify and the receiver can observe: this forms the interference mechanism of the
channel, as shown in the Figure 1.

1 A similar interpretation applies to integrity policies, e.g., wherein subjects with high integrity should not execute or
observe low-integrity data or code.

12 A Note Regarding Covert Channels

Figure 1. Abstract Covert Channel

2. SYNCHRONIZATION

An important distinction for a multilevel security system is that the sender (high) cannot send
synchronization signals to the receiver (low) except through covert channels (if a receiver can
directly read an external object that a sender writes to, it is considered a system flaw rather than a
covert channel). The receiver, on the other hand, can send “I am ready” synchronization signals to
the sender, in which case, the synchronization mechanism is a legitimate “channel” from low to
high. Alternatively, they can synchronize via out-of-band (temporal) agreements relative to a
“clock” mechanism that they both can read, such as, “you write on the odd time periods, and I
will read on the even time periods. Synchronization can also be achieved through a mutually
exclusive scheduling mechanism such as is commonly provided by an operating system.

In many descriptions of theoretical covert storage and timing channels, the sender and receiver
synchronize by reading a clock or by depending on a scheduler to alternately activate them,
because polling and the use of additional covert channels for synchronization may be less
efficient for the purposes of optimal channel capacity estimation.

3. CLOCKS

If there exists a fluctuating variable, not modified by the sender, which the receiver consults to
interpret or decode the data received, then that variable is effectively a “clock.” A clock can have
regular or irregular progression; and it can have different possible values, including a binary
range. Any modulated (e.g., fluctuating or monotonically increasing or decreasing) variable can
be used as a “clock.”

A Note Regarding Covert Channels 13

4. INTERFERENCE

The sender interferes with the receiver through what we call a “control structure,” such as a
file lock or disk-full indicator for a storage channel, and a scheduler or disk arm location for a
timing channel. In most storage channels, the receiver indirectly reads the interference
information via an error message; for timing channels, the receiver interprets the interference
(e.g., how long was my delay) via a clock. This is shown in the Table 1.

Synchronization
Mechanism

Interference
Mechanism

Interpretation
Mechanism

Storage
Channel

Clock/Scheduler Control Structure Error Message

Timing
Channel

Clock/Scheduler Control Structure Clock

Table 1. Covert Storage and Timing Channels

The sender’s activity in a timing channel can be viewed abstractly as interfering with the
receiver such that the clock variable, when read by the receiver, will be at the value that the
sender wishes the receiver to perceive. This is true regardless of whether or not the clock is
monotonically increasing by regular values. It is only required that the sender knows what effect
its actions will have on the clock value perceived by the receiver.

For a priority scheduler based timing channel, the sender interferes by consuming a smaller or
bigger time-slice. When the receiver is next scheduled (completing its wait for the CPU), it reads
the “clock” to interpret the bit or bits transmitted – the clock is not the channel, as the
transmission of information has already occurred in the delay. In another timing channel example,
the control mechanism is an internal data structure (e.g., shared table or disk arm location), which
is modified, added to, or deleted from by the sender to interfere with the receiver; the receiver
indirectly accesses the control structure through (e.g.) a synchronous operation; after completing
its wait for the operation, the receiver interprets the bits transmitted by reading the clock.

5. COVERT STORAGE CHANNEL EXERCISE

In this section we present a detailed description of a covert storage channel that is present in
certain file system implementations. File system directories “contain” files, as well as a
description of those files. When a file is created in a directory, the process creating the file
abstractly modifies that directory. In a multilevel environment, then, normal secrecy rules require
that the secrecy level of the process creating the file must be equal to the secrecy level of the
directory. This presents some practical problems, such as maintaining publicly writable
directories, like /tmp in Unix: how can processes at every secrecy level write to a directory if they
all have to be at the level of the directory? To remedy this problem in Trusted Solaris2, it
supports the notion of a Multi Label Directory (MLD), sometimes referred to as a deflection
directory in other multilevel operating systems.

An MLD is assigned the secrecy level of the process that creates it, but files may be created in
the MLD by any process whose secrecy level is greater than or equal to the level of the MLD.
The OS does this by creating hidden subdirectories at the level of the creating process, and
creating the file there. For example, a process at the UNCLASS level can create file1 in an MLD,
and a process at the SECRET level can create file2 in the same MLD. When the directory is

2 It should be noted that this behavior exists in an older version of Trusted Solaris. The existence of this behavior has
not been verified on the newer releases.

14 A Note Regarding Covert Channels

viewed from the UNCLASS level, only file1 can be seen, and when viewed from the SECRET
level, only file2 can be seen. As desirable as this functionality is, it creates a covert channel.

The cause of the covert channel is traced to another desirable aspect of file system directories:
we should not be able to delete a directory that still has files in it. A process will receive an error
message if it attempts to delete a directory that is not empty. Given a low-level MLD containing
a high-level file, a low-level process cannot see the high-level file, but if it tries to delete the
MLD, it will receive an error message, and thus know that one or more high-level files exist in
that directory. In other words, the covert channel exists because a high-level process can modify
the state of the MLD, interfering with the ability of the low-level process to delete the directory.

At the Naval Postgraduate School, one of the lab exercises assigned in the Introduction to
Computer Security course has the students take advantage of this covert channel to transfer data
from a high secrecy process to a low secrecy process. In this exercise, the channel is initialized
when a low-level process creates an MLD known by a high-level process. The two processes
must also agree on the meaning of the signal. It is assumed that if the low-level process can delete
the directory, then a bit value of 0 is being passed from high to low. If the low-level process
cannot delete the directory, then a bit value of 1 is being passed. The high-level process puts
something into the agreed upon MLD, or not, depending on the value of the bit being passed.
There must also be some synchronization mechanism for knowing when the low-level process is
ready to receive information, when it should try to delete the directory, and some mechanism for
knowing when the full message has been transferred. Conveniently, this communication can also
be arranged with other MLDs. In addition, it is possible to transfer more than one bit at a time by
making use of multiple MLDs at a time.

Putting this all together, the following gives the steps that both sender and receiver use to
transfer the contents of a file, eight bits (one byte) at a time, from high to low. We start by
assuming the sender and receiver know the location of the “.backdoor” directory used to stage the
activities.

5.1 Low-Level Receiver Process

1. Create all the MLDs used to transfer each byte of information, i.e., .backdoor/bit0,
.backdoor/bit1….backdoor/bit7.

2. Create the MLD used by the high-level process to signal when all the data has been
transferred: .backdoor/quit. Once this directory is created, it also signals the high-level
process that the low-level process is ready to receive data.

3. Repeat the following:
a. Create the .backdoor/signal MLD. When the high-level process detects that this

directory exists, it is a signal that the low-level process is ready to receive another
byte of information. The high-level process puts a file in this directory after it detects
its presence as a signal to the low-level process that it is still transferring information.

b. Sleep for two seconds to give the high-level process time to wake up and create a file
in the signal directory.

c. Try to delete the signal directory. Keep trying until successful, waiting one second
between each attempt. Once it can be deleted, the high-level process is done
transferring a byte of information.

d. Try to delete the .backdoor/quit directory. If successful, the high-level process is
communicating that there is no more data to send, and the loop must be exited.

e. Extract the byte of information by trying to delete each bit directory. If a directory
can be deleted, then the associated bit is a "0", otherwise it is a "1". Build a byte from
this information.

f. Recreate the bit directories that were deleted in the previous step.
g. Save the byte.

A Note Regarding Covert Channels 15

4. Delete all the bit directories.

5.2 High-Level Sender Process

1. Keep trying to create a file in the .backdoor/quit MLD directory until successful. The
.backdoor/quit directory does not exist until the low-level process creates it. This
becomes a signal to the high-level process that it has initialized the MLD directories
required to transfer a byte, and is otherwise ready to receive information.

2. Do the following until the contents of the file have been transferred:
a. Delete any files placed in the eight bit directories.
b. Request information about the .backdoor/signal directory until no error is

returned. If an error is returned, go to sleep for one second. When the high-level
process is able to obtain information about the directory, it means that the low-
level process has created it, which means that the low-level process is ready to
receive a byte of information.

c. Create a file in the .backdoor/signal directory. This prevents the low-level
process from deleting the directory, which is a signal to the low-level process that
the high-level process is not done transferring information.

d. Get the next byte in the file to transfer and determine which bits are 1’s.
e. Create files in the associated MLD directories for those bits that are 1’s. For

example, if the 6th bit is a 1, then a dummy file is created in the .backdoor/bit6
directory. This prevents the low-level process from deleting this directory.

f. Delete the file created in the .backdoor/signal directory. This allows the low-level
process to delete the directory, signaling that the high-level process has finished
transferring a byte of information.

g. Sleep for two seconds. This allows the low-level process to wake up and delete
the .backdoor/signal directory, signaling the high-level process that it is not done
retrieving the information.

3. Delete any dummy files placed in the eight bit directories.
4. Delete the file in the .backdoor/quit directory. This allows the low-level process to delete

the directory, signaling that there is no more data to transmit.

6. SUMMARY

Covert channel exploitation scenarios can vary widely, yet, most utilize the same abstract
mechanisms to illicitly transfer information from a high sensitivity subject to a low sensitivity
subject: synchronization and interference. We have provided concise descriptions of these
abstractions, and used them to differentiate covert timing and storage channels, as well as to
describe a concrete and detailed laboratory exercise.

